Towards a Robot Architecture for Situated Lifelong Object Learning

Jose L. Part and Oliver Lemon

Abstract—The ability to acquire knowledge incrementally
and after deployment is of utmost importance for robots
operating in the real world. Moreover, robots that have to
operate alongside people need to be able to interact in a
way that is intuitive for the users, e.g., by understanding and
producing natural language. In this paper we present a first
prototype of a robot architecture developed for situated lifelong
object learning. The system is able to communicate with its
users through natural language and perform object learning
and recognition on the spot through situated interactions. In
this first stage, we evaluate the system in terms of recognition
accuracy which gives an indirect measure of the quality of
the collected data with the proposed pipeline. Our results
show that the robot can use this data for both learning and
recognition with acceptable incremental performance. We also
discuss limitations and steps that are necessary in order to
improve performance as well as to shed some light on system
usability.

I. INTRODUCTION

Robots that operate in dynamic and unstructured environ-
ments need to be capable of adapting and expanding their
knowledge as they interact with their users and surroundings.

Over the past few years, there has been a renewed surge
in interest on lifelong machine learning [1], [2] due to its
high relevance to real world applications. However, most
approaches usually focus exclusively on the learning model
and ignore the data acquisition steps by relying on existing
and sometimes curated datasets. In addition, these models
are often evaluated on “toy” datasets that fail to capture the
complexities of real-world objects (e.g., MNIST).

In this paper, we describe a system architecture that
enables robots to learn new objects by interacting with its
users in a lifelong manner. The system can detect objects on
supporting planes and process the corresponding input data
to make it suitable to be consumed by the learning algorithm.
In addition, the system can engage in clarification dialogue
to address errors, e.g., speech recognition or entity extraction
errors.

In this study, the following assumptions are made:

« Objects are assumed to be on a supporting plane.

o There is a single object on the supporting plane.

o There is a single user so we don’t explicitly address the
problem of having multiple referring expressions for the
same objects, e.g., laptop and notebook. However, we do
provide some insights on how this might be addressed
as discussed in Sec. V-C.

Jose L. Part is with the Edinburgh Centre for Robotics, Edinburgh,
Scotland, UK jose.part@ed.ac.uk

Oliver Lemon is with Heriot-Watt University, Edinburgh, Scotland, UK
o.lemon@hw.ac.uk

Fig. 1.

One of the locations used for data collection.

II. RELATED WORK

Some work has approached the related (precursory) prob-
lem of lifelong object discovery and autonomous 3D model
building. For instance, Collet et al. [3] developed a sys-
tem that allows a robot to collect data from exploring an
environment and analyze it in order to discover objects
within. The approach relies on domain knowledge which can
consist of spatial and temporal constraints, prior knowledge,
similarity measures and so on. Finman et al. [4] on the other
hand, learn the object segmentations from looking at changes
in dense RGB-D maps over time. In a similar approach,
Faulhammer et al. [5] proposed to model the static parts
of the environment and detect the objects of interest by
extracting dynamic clusters, i.e., regions of the point cloud
that change in between visits to that particular location in the
environment. Once a cluster has been identified and selected,
the robot plans a trajectory around it in order to collect
multiple views which are then registered together.

In the topic of object learning, Krause et al. [6] present an
approach for one-shot learning of novel objects by interacting
with a user through natural language. The approach relies on
detectors and validators for the different attributes than can
be used to describe objects. For instance, they use shape
contexts to describe 2D shapes such as a red cross or a
biohazard sign. This in turn requires models to be trained
in advance and a prior knowledge of the kind of attributes
that the user may refer to. Other work has approached object
learning through developmental approaches, incorporating
active exploration and social interaction [7], [8].



In a different line of work, the semantic web has been
used to generate hypothesis over unknown objects based on
their co-occurrence matrices with other identified objects in a
scene. For instance, Young et al. [9] focus on the knowledge
acquisition of task-related objects from the semantic web
using contextual information obtained from situated observa-
tions. The approach assumes a partial knowledge of the scene
in which the unknown object is found as well as a history
of previous scenes where the object appeared. They make
use of distributional semantics based on spatio-temporal
context to propose label candidates, i.e., they compute the
similarity among the identity of objects found in the scene
and all possible label candidates in order to rank them. Later
on, Young et al. [10] combined this approach with a pre-
trained CNN. The difference is that in this case, they use the
semantic web to refine the predictions output by the CNN.
This however, suffers from the same shortcomings that pre-
trained models usually have, i.e., there is a limited number
of categories that they can predict. In both works, the system
is not able to interact with users to improve its knowledge
although the long-term goal is to present the curated list
of candidates to a series of users (through crowdsourcing
for example) for them to choose the correct one. In a
somehow similar approach, Cartucho et al. [11] propose a
learning algorithm that relies on predictions from a pre-
trained network and user feedback to refine those predictions.

Vanzo et al. [12] proposed a model for incremental learn-
ing of objects but the focus is mainly on learning a dialogue
policy for learning when to ask for feedback to the user based
on the confidence scores given by the vision module. Other
work [13] uses feedback from users to combine predictions
from pre-trained networks in order to identify novel objects.

The work most similar to ours was recently proposed by
Hasler et al. [14]. They developed a similar architecture that
learns objects incrementally by interacting with users. How-
ever, their architecture differs from ours in that they don’t use
depth information for the feature representation, the image
background is not discarded and they restrict the language
the user can use to teach the robot. More importantly, they
store all features whereas we use an incremental learning
model that automatically compresses the data by learning
prototypical feature vectors.

ITII. PROPOSED SYSTEM

Fig. 2 illustrates the system architecture and how every
component interacts with each other. In the following sec-
tions we describe each of these modules in more detail.

A. Dialogue Manager

The dialogue manager is based on Opendial [15] and acts
as the central hub of the system. It routes data across modules
and manages the actions that need to be executed.

Even though it is possible to handle the natural language
understanding portion with Opendial, it is usually limited by
the pre-specified dialogue domain. Hence, in order to deal
with open requests from the user, we rely on a separate

Natural Language Understanding (NLU) module which is
explained in Sec. III-B.

For generating the system’s responses on the other hand,
we use predefined templates.

B. Natural Language Understanding Module

The speech recognition module, based on the Google
Speech API, submits the transcript of the user utterance to
the dialogue manager which redirects it to the NLU module.
The latter is responsible for recognizing the user’s intent
and the entity that is referred to in the utterance if relevant.
The system can also make clarification requests and handle
simple feedback given by the user.

1) Intent Recognition: For intent recognition, the Rasa!
NLU API is used. This API has different pipelines for
intent recognition and selecting one is generally based on
the intended application and the amount of data available for
training the respective model. In this work, the spacy-sklearn
pipeline is used, which makes use of spaCy for feature
extraction and an SVM for classification. This pipeline is
suitable for small applications for which there isn’t a lot of
data available.

The module distinguishes among 4 different intents, Rec-
ognize, RequestLearn, Rejection and Confirmation. The first
two prompt the system to either recognize the object in front
or begin the learning behavior. The last two are used to
accept feedback when the system asks for clarification. For
training the model, we manually developed a small dataset
of sentences that aims to capture the different ways in which
people express the aforementioned intents.

2) Open-Set Entity Extraction: The entity extractor is
realized with the dependency parser from spaCy? and is
only relevant for the RequestLearn intent. When the user
interacts with the system, every noun phrase (NP) in the
user’s utterance is analyzed. In order to decide whether to
keep or discard the noun phrase, we look at the head of
its root. We are only interested in those noun phrases that
follow the verb “be” or the preposition “of” and we discard
determiners and pronouns. For example, in the sentence from
Fig. 3, there are 3 noun phrases, “a box”, “cookies” and
“the kitchen table”. Following the given rules, we begin
by discarding “the kitchen table” while the other two NPs
are preserved. The preposition “of” expresses a relationship
between entities and so we use it to join the NPs. Finally,
determiners are removed such that the end result in the
example is “box of cookies”.

C. Learning and Recognition Module

The learning and recognition module is based on the
system proposed by Part and Lemon [16], the main difference
being its implementation. In this work, we use ResNet50 [17]
models as the pre-trained networks (available from Keras®)
and Grow When Required [18] (GWR) self-organizing net-
works. In addition, every class is represented by its own

Uhttps://rasa.com/
Zhttps://spacy.io/
3https://keras.io/



RGB Image

Scene
Point Cloud

Object
Point Cloud

Object Segmentation

Depth Map

Object Tracking

RGB Preprocessing '7

Depth Preprocessing

Tracked Object
Point Cloud

Mask Generation

Learn

ASR —» NLU —>
Dialogue Manager

TTS <— NLG <—
Label

Recognize

Fig. 2.

’@—’ Self-Organizing Networks

ResNet50 w/o
softmax layer

S[EWION 90BlNS payse
obew| goy paxsep

Tj

Concatenated
Features

r‘f

ResNet50 w/o
softmax layer

System architecture. The scene point cloud is processed in order to segment and track the object of interest and eventually compute a binary

mask that is used to process the RGB image and depth map (blue blocks). The learning model (yellow blocks) is then fed with the processed RGB and
surface normals images in order to perform either learning or recognition. The dialogue system (green blocks) determines the user’s intent and extracts the
referred entity if applicable in order to manage the learning model’s behavior (learning or recognition).

HEADw HEAD w HEAD—l

There is a box of cookies on the kitchen table

NP NP NP

Fig. 3. Example of sentence processing for open-set entity extraction. NP
are the noun phrases and the blue arrow points to the root of the noun
phrase. Following the process described in Sec. III-B.2, the extracted entity
for this example is “box of cookies”.

growing self-organizing network as opposed to having a
single network for all the classes. This has the advantage
that different classes won’t interfere with each other and thus
helps alleviate catastrophic forgetting, especially since the
representations are fixed by the pre-trained networks.

The preprocessing pipeline is also similar to the one
proposed by Part and Lemon [16] although in this case, we
are dealing with raw data as opposed to a processed dataset
and hence, the objects need to be segmented and tracked
in order to produce suitable data for the learning module.
Below, we describe each component in more detail.

1) Object Segmentation and Tracking: The pipeline be-
gins by applying a pass-through filter and downsampling the
point cloud, and looking for planar surfaces in the space
in front of the robot. The plane is segmented using the
RANdom SAmple Consensus (RANSAC) algorithm and its
convex hull is computed on the result. The convex hull is
used to focus the search for clusters only in the volume on
top of the segmented plane. Finally, Euclidean clustering is
applied to segment the object on the plane if any.

Once the object has been segmented, its point cloud is used
to initialize a particle filter tracker. By doing so, we can track
the pose of the object while it’s being moved in front of the

robot during the learning and recognition phases*. Tracking
the object point cloud allows us to compute its binary mask
by back-projecting the point cloud to the image frame using
the camera parameters.

2) Image Preprocessing: Once the object’s binary mask
has been generated, it is used to find the bounding box
containing the object, which is squared and then used to
crop the images.

To be able to use the pre-trained ResNet50 model on depth
information, the depth map has to be colorized first since
the model was designed to process color information (RGB
channels). The chosen colorization method is to compute
surface normals on the depth map as described by Part and
Lemon [16].

Finally, using the binary mask, the image background is
gradually faded into the mean image of the original dataset
used to train the ResNet50 models in order to reduce these
models’ response to background information.

3) Learning and Recognition Pipeline: The preprocessed
color image and surface normals are fed to pre-trained
ResNet50 models to extract their features. Both networks are
exactly the same and were originally trained on ImageNet.
In order to use them as feature extractors, the top layer was
removed. Then, the features obtained from both channels
are concatenated and fed to an array of incremental self-
organizing networks.

The self-organizing networks are collections of nodes
joined by edges that represent some data distribution. Every
node has an associated weight and a firing counter that
indicates how well trained the node is. If the firing counter
is high, it means that the node has fired many times and
as a result, it has learned the data it represents well and
future firings will not have such a big impact on its weight.
On the contrary, if the firing counter is low, that means

“Note that this also applies if the robot would be manipulating the object
itself.



that the node is still learning and is susceptible to larger
changes. The edges have an associated age that can increase
or decrease depending on the stimuli produced by the data
and are eliminated when the age reaches a certain maximum
value.

During the learning behavior, the model searches for the
network associated to the class corresponding to the label
given by the user. If the associated network doesn’t exist
yet, the model creates and initializes a new one. If the
network does already exist, then the model updates it with
the new data. The update process is as follows. At the
start, the network is initialized with the first two data points
that become available, i.e., two nodes are inserted and their
weights are set to the feature vectors of the incoming data
points (images in this case). For every subsequent data point,
we look for the two closest nodes in the network according
to a similarity metric, e.g., Euclidean or cosine distances,
and join them by an edge if they are not already joined.
Then, we compute the firing activity of the best matching
node according to (1):

a= e*HI*wz‘H7 1)

where x is the feature vector of the input data point and
w; is the weight of the best matching node. If the activity
is low and the node is well trained (has fired repeatedly in
the past), then a new node is added between the two best
matching nodes. On the other hand, if the activity is high or
the node is relatively new (low firing counter), then the node
and its neighbors are trained according to respective learning
rates. In this manner, the network evolves to represent the
underlying distribution of the data. To some extent, it can
be thought of as a lossy data compression facility since it
learns prototypes for the input data that then can be used to
identify similar data.

During recognition, the Euclidean distance between the
input feature vector and the weights of every node in
every network is computed. The classification result is then
selected as the label of the network that yielded the shortest
distance among all networks.

IV. EXPERIMENTAL EVALUATION
A. Hardware Setup

For data collection, we used the Tiago robot developed by
PAL Robotics and the RGB-D sensor mounted in its head,
i.e., an Asus Xtion. Most of the processing however was
performed on a development laptop connected to the robot
through an Ethernet cable. The development laptop runs
Ubuntu 16.04 LTS with ROS Kinetic and has an Intel Core
i7 processor and an NVIDIA GeForce GTX 980M GPU.
Speech was acquired with a wireless Singstar microphone
and produced with Tiago’s speakers.

B. Data Collection

The data was collected in a home environment® over
the course of several days using 2 locations (the coffee

5A demo of the system is available at https:/youtu.be/mWwwrW8eUTfIL.

Fig. 4.
The dataset consists of 63 objects belonging to 26 classes.

The collection of common household objects used in this work.

table in the living room and the kitchen table) and varying
illumination conditions, both natural and artificial. The setups
used resemble the one shown in Fig. 1. Through natural
language interaction, the user prompted the system to learn a
series of objects and the data was acquired with the RGB-D
sensor mounted on the Tiago robot, i.e., an Asus Xtion. We
gathered 63 objects belonging to 26 classes. For every object
and environmental setup, we collected 30 color images, depth
maps and binary masks at a maximum rate of 5Hz. Variations
in the acquisition rate are due to, among other things, the size
of the object, i.e., the size of the segmented point cloud.

Objects belonging to the same class vary either in ap-
pearance, shape or size. Our computed features do not take
into account the size of the objects but this is often a useful
piece of information since for certain cases it tends to be the
distinguishing factor, e.g., “bring me the small cooking pot”.

For collecting the data we took into consideration factors
like location and illumination conditions. We also varied
the side from where the demonstration was performed, i.e.,
where the user’s hand appears in the robot’s sensor feed.
Other environmental factors included shadows, reflections,
glares and backlight®.

C. Training and Evaluation Protocol

1) Incremental Training and Evaluation: At the begin-
ning, we trained the model on a subsampled’ version of the
Washington RGB-D Object dataset [19] to simulate the case
in which the robot already has a base knowledge. This is
particularly relevant for the experiment in Sec. V-C.

Our dataset is split into 4 different sessions. Each session
is characterized by a change in location and illumination
conditions. Fig. 5 shows examples of object images from
the different sessions.

6We omitted translucent objects in our study since depth information is
too noisy in those cases.
7We took one every 25 frames.



(a) Session 1 (b) Session 2

Y

.. |

o

(c) Session 3 (d) Session 4

Fig. 5. Examples of the environmental conditions for each session. a)
Sunlight coming through the window in location 1. b) Natural light in
location 1. c¢) Artificial light in location 2. d) Natural light in location 2.

Every experiment from Sec. V-B was run 10 times varying
the random sequence in which the data was fed. For every
run, we randomly select 3 sessions for incremental training
and the remainder session only for evaluation. In addition,
from every training session, we randomly select one instance
from every class for evaluation, such that the final evaluation
set consists of one entire session and a small subset of
the other 3 sessions. If the class from the training session
only has one instance, then it is used both for training and
evaluation®.

There are two conditions that we evaluate as discussed
in Sec. V-B. First, the case in which the instances from
different sessions don’t mix during the learning process, i.e.,
the robot learns all the objects for one session before moving
to the next. This is the sequential experiment. For the second
case, we randomly shuffle instances from different sessions
altogether.

2) Accuracy Evaluation when using Word Embeddings:
For this experiment, we repeated a similar protocol as the one
explained in the previous section for the sequential experi-
ment. The main difference is that we used word embeddings
to compute similarity measures between the labels predicted
by the model and the ground-truth labels. We took into
account 5 thresholds to report accuracy, i.e., 0.5, 0.6, 0.7,
0.8 and 0.9. The higher the threshold, the more selective
the model will be. We run each experiment only once with
the same random seed since in this case we only want to
compare how the threshold affects the accuracy curves.

8Since we report incremental accuracy, this does not bias our results
significantly. In addition, there is always at least one session that is fully
used for evaluation such that there will be some degree of novelty in the
evaluation set regardless of what stage the learning process is in.

V. RESULTS
A. Sample Dialogues

The following are some example interactions that the
system is able to handle®. The first example illustrates the
case in which the system gives a wrong recognition result:

User: What is this?
Robot: It’s a shampoo.
U: No, it’s laundry detergent.
R: Did you say laundry detergent?
U: Yes.
R: Ok, could you show me the laundry detergent?
Learning in progress (user moves object)...
R: I finished learning the laundry detergent.

The second example illustrates a case where the system
extracts the wrong entity (or an incomplete entity'?):

User: This is a soda can.

Robot: Did you say soda?
U: No.
R: Ohh, I see... Could you say just the name of the
object again please?
U: Soda can.
R: Did you say soda can?
U: Yes.
R: Ok, could you show me the soda can?

Learning in progress (user moves object)...

R: I finished learning the soda can.

B. Incremental Accuracy

Figs. 6 and 7 show the incremental accuracy of the system
on the proposed dataset for two different conditions. The first
one assumes structured study sessions where the robot learns
the objects in one location before moving to the next one.
This scenario is useful to analyze how environmental factors
affect system performance since that is the main difference
among sessions. It is clear from Fig. 6 that the system
performs relatively well after just one study session, reaching
almost 60% accuracy. Note as well the sudden slight drops in
performance with every session switch. We attribute this to
the fact that during these switches, the model is fed with new
data that follows a different distribution than the data learned
in the previous sessions (due to changes in the environmental
conditions) and a higher rate of misclassification occurs as
a result. After more data from the new session continues to
be incorporated, the system recovers.

In the second condition, the instances from all the sessions
are mixed and learned in random order. Thus, the system gets
accustomed to the different environmental conditions from
the beginning of the learning process. As a result, the curve
in Fig. 7 is smoother and has less variation across different
runs. Note that this unstructured scenario is more realistic for

9The robot notifies the user that it finished learning once it has collected
30 sets of images as explained in Sec. IV-B

101 this case, this happens because the model spaCy relies on tags “can”
as a verb instead of a noun and “soda” as the noun instead of a noun
modifier. Hence, the noun phrase is just “soda”. Note however that the
user may be ok with this result.



80
601
X
> ;
8 |
S 40
13 H
g i
< |
20 \ /
| session switch
0 -
0 20 40 60 80 100 120 140
Number of objects
Fig. 6. Incremental accuracy computed over 10 runs on the proposed

dataset when structuring the learning through well defined study sessions.
The incremental evaluation is performed every 4 instances (objects) on the
full evaluation set.

80 A

60
X
>
]

£ 40
o
1%
<

20 A

0 -

0 20 40 60 80 100 120 140
Number of objects
Fig. 7. Incremental accuracy computed over 10 runs on the proposed

dataset when shuffling the instances across the different learning sessions.
The incremental evaluation is performed every 4 instances (objects) on the
full evaluation set. This evaluation condition corresponds to a more natural
interaction since there is not a lot of structure in the learning, it happens as
it is required.

a robot operating in the real world since there, there are no
timetabled study sessions; the robot needs to adapt quickly
and seamlessly when required.

One more interesting aspect is that after learning the
full set of objects, the accuracy on the Washington RGB-
D Object Dataset (base knowledge - see Sec. IV-C.1) was
not affected, only a 1% drop was observed.

C. Effects of Incorporating Word Vector Similarity

Languages are very rich and people often use a wide
variety of ways to refer to the same things, e.g., cup and
mug, laptop and notebook, pitcher and jug. This poses some
challenges when a robot has to interact with different users
if it’s not fit with a mechanism to disambiguate and unify
its knowledge. One possible way to address this issue is
to use word embeddings and compute similarities between

100

80 -
S 60
>
1)
o
>
§ 40
—— Threshold = 0.5
—— Threshold = 0.6
20 A —— Threshold = 0.7
—— Threshold = 0.8
—— Threshold = 0.9
0 T T T T T T T T
0 20 40 60 80 100 120 140
Number of objects
Fig. 8. Influence of using word vector similarity between the ground-

truth and the predicted labels during the recognition phase. The incremental
evaluation was performed every 8 instances. A lower threshold yields
a higher accuracy as expected but it also means accepting less similar
predictions as correct. In fact, thresholds below 0.7 are too permissive and
may yield a decrease in perceived performance.

referring expressions'!. For example, if the user requests the
robot to “bring the jug”, but the robot is not familiar with
that label, it could look through its database and compute
similarities to all known labels. Finally, it would ask the
user if they mean “the pitcher”, and update its database
accordingly. Alternatively, it could bypass the clarification
step and bring “the pitcher” if it is sufficiently confident that
“jug” and “pitcher” refer to the same object.

Fig. 8 shows the classification accuracy when the system
is allowed to tag a prediction as correct if it is sufficiently
similar to the ground-truth according to an embedding model,
the ground-truth assumed to be the requested item by the
user. A higher similarity threshold corresponds to a more
selective model where the ground-truth and retrieved label
need to be very similar in order for the system to accept them
as referring to the same object. Conversely, a lower similarity
threshold will allow the system to accept less similar labels as
good candidates. As illustrated in the figure, this will yield
higher accuracy but at the expense of making more errors
in the eye of the user, who may disagree about a “plier”
being the same as a “screwdriver”'?. Hence, we believe this
mechanism to be very useful for allowing the robot to prompt
the user for clarification and feedback but not as a way to
bypass knowledge gaps or make confident assumptions.

VI. DISCUSSION AND FUTURE WORK

In this work, the data has been collected by a single user
which does not allow us to make claims of generalization
of the proposed architecture to different users. Part of our
future work includes setting up experiments with non-expert
users to address this limitation. The goal is to perform

T Another possibility could be to use an ontology like WordNet or any
ontology that encodes taxonomic relationships.

12 According to the model used, the similarity score between “plier” and
“screwdriver” is about 0.75, which makes sense since both are tools, albeit
with very different functions.



both quantitative and qualitative evaluations in regards to the
quality of the collected data, the robustness of the dialogue
system and the subjective perception of how the system
performs from the user’s perspective. In addition, these
experiments will give insights into limitations of the NLU
module and expose any potential expressions not captured
by the current dataset.

Another avenue for future work involves the related prob-
lem of open-set object learning and recognition. So far,
the system doesn’t have a mechanism to identify unknown
objects. Thus, it will always assume that the “new” objects
belong to one of the categories that were learned before
(closed-world assumption) unless told otherwise. This limits
the level of autonomy that it can have and it increases the
burden on the user who has to check whether the system is
able to correctly identify every object.

One of the main limitations of the current version of
our system is that whereas it is able to recognize a small
amount of intents, it cannot deal well with open dialogue.
We explored the use of confidence scores reported by the
intent recognizer but we found that there is no reliable value
that can distinguish between known and unknown intents.
This is a very challenging problem and a hot research topic.

Finally, there are also limitations that arise from the
requirement to synchronize data coming from different com-
ponents, e.g., the binary mask obtained from processing the
point cloud has to be in sync with the image feeds. We found
that sometimes this can affect the speed in which the data
can be processed and thus, the acquisition can take longer.
We expect that as hardware becomes more power efficient,
robots will be fit with more powerful processing components
that will allow us to overcome most of these issues.

VII. CONCLUSION

In this paper, we presented a first version of a robot
architecture for lifelong object learning through situated
interactions with a user. The system is composed of a
dialogue manager, a natural language understanding module
and a learning and recognition module. Through the natural
language understanding module, the system is able to extract
open-set entities and resolve misunderstandings through the
request for clarifications. The architecture includes a pre-
processing pipeline for segmenting and tracking objects in
real-time, which allows the system to focus on the object of
interest. Our preliminary evaluation showed that the system
was able to learn effectively and quickly from very little data.

ACKNOWLEDGMENT

We would like to thank Mauro Dragone for granting us
access to the Assisted Living Lab at Heriot-Watt University
and to the Tiago Robot. We also thank the anonymous
reviewers for their comments.

During the development of this work, Jose L. Part was
funded by a James Watt scholarship from the School of
Mathematical and Computer Sciences at Heriot-Watt Uni-
versity. The evaluation experiments were performed on the
Robotarium Cluster supported by the Robotarium Grant
(EPSRC Grant No. EP/J015040/1).

[1]

[2]

[3]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

REFERENCES

Z. Chen and B. Liu, Lifelong Machine Learning, 2nd ed., R. J.
Brachman and P. Stone, Eds. Morgan & Claypool Publishers, 2018,
vol. 38.

G. 1. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter,
“Continual Lifelong Learning with Neural Networks: A Review,”
Neural Networks, vol. 113, pp. 54-71, 2019.

A. Collet, B. Xiong, C. Gurau, M. Hebert, and S. S. Srinivasa, “Herb-
Disc: Towards Lifelong Robotic Object Discovery,” The International
Journal of Robotics Research (IJRR), vol. 34, no. 1, pp. 3-25, 2015.
R. Finman, T. Whelan, M. Kaess, and J. J. Leonard, “Toward Life-
long Object Segmentation from Change Detection in Dense RGB-D
Maps,” in Proceedings of the European Conference on Mobile Robots
(ECMR), September 2013, pp. 178-185.

T. Faulhammer, R. Ambrus, C. Burbridge, M. Zillich, J. Folkesson,
N. Hawes, P. Jensfelt, and M. Vincze, “Autonomous Learning of
Object Models on a Mobile Robot,” IEEE Robotics and Automation
Letters, vol. 2, no. 1, pp. 26-33, 2017.

E. Krause, M. Zillich, T. Williams, and M. Scheutz, “Learning to Rec-
ognize Novel Objects in One Shot through Human-Robot Interactions
in Natural Language Dialogues,” in Proceedings of the 28th AAAI
Conference on Artificial Intelligence, 2014, pp. 2796-2802.

S. Ivaldi, S. M. Nguyen, N. Lyubova, A. Droniou, V. Padois, D. Filliat,
P-Y. Oudeyer, and O. Sigaud, “Object Learning Through Active
Exploration,” IEEE Transactions on Autonomous Mental Development,
vol. 6, no. 1, pp. 56-72, 2014.

N. Lyubova, S. Ivaldi, and D. Filliat, “From Passive to Interactive
Object Learning and Recognition through Self-Identification on a
Humanoid Robot,” Autonomous Robots, vol. 40, no. 1, pp. 33-57,
2016.

J. Young, V. Basile, L. Kunze, E. Cabrio, and N. Hawes, “Towards
Lifelong Object Learning by Integrating Situated Robot Perception and
Semantic Web Mining,” in Proceedings of the European Conference
on Artificial Intelligence (ECAI), 2016, pp. 1458-1466.

J. Young, L. Kunze, V. Basile, E. Cabrio, N. Hawes, and B. Caputo,
“Semantic Web-Mining and Deep Vision for Lifelong Object Discov-
ery,” in Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), 2017, pp. 2774-2779.

J. Cartucho, R. Ventura, and M. Veloso, “Robust Object Recognition
Through Symbiotic Deep Learning In Mobile Robots,” in Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), October 2018.

A. Vanzo, J. L. Part, Y. Yu, D. Nardi, and O. Lemon, “Incrementally
Learning Semantic Attributes through Dialogue Interaction,” in Pro-
ceedings of the 17th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS), Stockholm, Sweden, July 2018, pp.
865-873.

M. de Jong, K. Zhang, A. M. Roth, T. Rhodes, R. Schmucker, C. Zhou,
S. Ferreira, J. Cartucho, and M. Veloso, “Towards a Robust Interactive
and Learning Social Robot,” in Proceedings of the 17th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS),
Stockholm, Sweden, July 2018, pp. 883-891.

S. Hasler, J. Kreger, and U. Bauer-Wersing, “Interactive Incremental
Online Learning of Objects Onboard of a Cooperative Autonomous
Mobile Robot,” in International Conference on Neural Information
Processing (ICONIP). Springer International Publishing, 2018, vol.
LNCS 11307, pp. 279-290.

P. Lison, “Structured Probabilistic Modelling for Dialogue Manage-
ment,” Ph.D. dissertation, University of Oslo, 2014.

J. L. Part and O. Lemon, “Incremental Online Learning of Objects for
Robots Operating in Real Environments,” in Proceedings of the 7th
Joint IEEE International Conference on Development and Learning
and on Epigenetic Robotics (ICDL-EPIROB), September 2017.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning
for Image Recognition,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2016, pp.
770-778.

S. Marsland, J. Shapiro, and U. Nehmzow, “A Self-Organising Net-
work that Grows when Required,” Neural Networks, vol. 15, no. 8-9,
pp. 1041-1058, October 2002.

K. Lai, L. Bo, X. Ren, and D. Fox, “A Large-Scale Hierarchical
Multi-View RGB-D Object Dataset,” in Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), May
2011, pp. 1817-1824.



