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Abstract— This paper reports initial results from our ongoing
work on Natural Language grounding through situated interac-
tion for robots acting in unstructured environments. We present
an approach for incremental on-line learning of object classes
based on a novel combination of a Self-Organizing Incremental
Neural Network (SOINN) and a deep Convolutional Neural
Network (CNN). We evaluate our approach on the RGB-D
Object Dataset and on four aspects: 1) object classification
accuracy, 2) incremental learning in terms of the number
of classes, 3) potential for realising active learning, and 4)
feasibility to use the system in an on-line setting. Our results
show that the approach has an acceptable performance for
object classification (e.g. over 90% accuracy) and provide some
insights into how it could be improved by harnessing interaction
with both the environment and a human tutor.

I. INTRODUCTION

In order to take robots out of the lab and deploy them
in the real world, they need to be able to understand the
environment in which they operate and to communicate
effectively with people. It is not enough to have them execute
pre-programmed routines and deal only with objects and in
situations they have been trained on. They have to be able to
rapidly learn and adapt to new environments and the people
with whom they are going to be interacting.

One step towards this goal is to develop methods that allow
robots to learn to recognize new objects as they interact with
them, i.e. incrementally and in an on-line fashion.

In the last few years, the image classification scene has
been dominated by approaches based on multiple stacked
layers of Convolutional Neural Networks ([1], [2], [3]).
These models are usually designed to solve a particular task
and are trained off-line on massive datasets of hand-labelled
images. Some of these approaches have been tailored for
the object recognition task by using a combination of RGB
and depth information ([4], [5]) and fine-tuning or otherwise
using pre-trained CNNs ([6], [7], [8]). A further problem for
such methods is that it is assumed that the number of classes
is known in advance. Thus, once trained, if the task changes
or new classes need to be added, the whole model has to
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be retrained. All these factors limit their suitability for real-
world robot applications, where the data is not available in
advance, the number of classes is not known, and the model
needs to be trained on-line and with a limited number of
examples.

Pasquale et al. [9] investigated how to leverage the success
of deep learning architectures in an incremental setting by
using the extracted features from a pre-trained Convolutional
Neural Network (CNN) as input to a linear classifier that
can be updated every time new samples become available.
However, they address incrementality from the point of view
of the amount of data rather than the number of classes.
Thus, their approach does not support the incorporation of
new classes to the model once it has been initially trained.

Nyga et al. [10] used an ensemble of experts coupled
with a Markov Logic Network (MLN) to classify common
household objects. The ensemble is composed by a series of
algorithms that annotate individual features (evidence) of the
observed object and the MLN infers the object’s class based
on that evidence. The main disadvantage of their approach
is that the MLN is trained off-line using a dataset of hand-
labelled scenes. Moreover, the ensemble algorithms are hand-
engineered and fixed at training time. Hence, this approach
is not suitable for incremental on-line learning.

Other methods for object recognition focus on zero- or
one-shot learning ([11], [12], [13], [14]), which are es-
sentially attribute-based classification approaches. However,
they still require to have pre-trained classifiers for each
attribute that is being considered. Hence, they suffer from
the same shortcomings mentioned before.

We argue that in real-world applications we cannot foresee
all the objects that the robot will interact with and hence,
propose to use an incremental on-line learning approach.
In order to state our problem more clearly, we make the
following assumptions:

1) The data is not available beforehand, which means that
the number of classes is unknown and labels, if any,
are provided at runtime.

2) The data is input sequentially (e.g. video frames),
which means that there is a high correlation and
temporal coherence between consecutive data points.

3) There is a human tutor available that is able to provide
labels at runtime.

In this work, we aim to assess how well our approach
discriminates between different classes, how it behaves when
adding new classes incrementally, how suitable it is for
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Fig. 1. Simplified diagram of the system architecture. Images of the target objects are input sequentially to the CNN, based on [1], which outputs the
computed feature vectors. These feature vectors are then used to train a Load-Balancing SOINN classifier that learns the topology of the data and clusters
it according to a similarity metric. Currently, most of our evaluation has been performed using the approach as a supervised method (dashed line).

discovering knowledge gaps and acting appropriately to
address them (active learning), and how feasible it is to use
it as an on-line learning method.

The remainder of the paper is organized as follows:
Section II presents our proposed method and the rationale
behind it, Section III describes the dataset we used, Section
IV explains the experiments we performed and the results
we obtained, and finally Section V discusses our results and
future directions of work.

II. METHODS

In order to be in line with our motivation and assump-
tions, we propose the system architecture illustrated in Fig.
1, which consists of two main blocks, namely a feature
extractor (CNN) and a classifier (LB-SOINN). Images are
input sequentially into the feature extractor, which computes
a 4096-dimensional feature vector, and this vector is then fed
to the classifier, which learns the underlying structure of the
data. We now describe each component in more detail.

A. Classifier

In order to deal with the particular nature of our prob-
lem, we adopted the Load-Balancing version of the Self-
Organizing Incremental Neural Network (LB-SOINN) pro-
posed by Zhang et al. [15] as our classifier. LB-SOINN
is an unsupervised learning method inspired by the Self-
Organizing Map [16]. Each node in the network has an
associated weight, which lives in the feature space of the
data. Every time a new signal (feature vector) becomes
available, the algorithm assesses whether a new node should
be added to the network based on a similarity metric between
the input signal and the weights of the two nearest nodes. If
no new node is added, the weights and connections of the
existing network get updated. In this manner, the topology
of the network is continuously being updated to reflect the
distribution of the input data.

Some of the claims [15] that motivated us to select this
approach are that LB-SOINN: 1) is able to cluster irregular
data distributions, 2) is able to process both stationary and
non-stationary data, 3) can deal with overlapped regions, 4)

is robust to noise in the input data, 5) preserves previously
acquired knowledge, and 6) forms a stable structure. How-
ever, the method still has the disadvantage that it depends
on six parameters that need to be tuned depending on the
nature of the input data. These are λ, which determines the
frequency of noise removal, agemax, which determines the
lifetime of each edge in the network, c1 and c2, which control
the deletion of nodes that are attributed to noise, γ, which
is used for controlling how classes are split and merged,
and η, which controls the ratio between different distance
metrics for assessing the similarity between feature vectors.
For computing the similarity between nodes, we adopted
the framework proposed by Zhang et al. [15], which gives
different weights to the Euclidean distance and the Cosine
distance depending on the dimensionality of the input data.

Even though the approach belongs to the unsupervised
learning category, we have used it as a supervised method.
This is for two main reasons. First, we assume that this
method will be used in an interactive setting were there
is some form of supervision available. Second, depending
on how the data is distributed, there is the possibility that
multiple clusters form for the same class (see Section IV-A
for more details), in which case a purely unsupervised
method would lead to having some classes split into multiple
subclasses. However, the fact that we are using an unsuper-
vised method allows us to enable a behaviour of knowledge
gap detection as will be discussed in Section IV-C. This not
only has the potential to improve the representations learnt
by the robot but also to reduce the load for the tutor in an
interactive setting.

Another difference between the approach proposed by
Zhang et al. [15] and our implementation is that we have
disabled the algorithm for splitting overlapped regions since,
at least for our data, it behaves quite unstably.

B. Feature Extractor

Another important part of our approach is the chosen
feature representations. Despite all the limitations that deep
learning architectures have, as discussed in Section I, it
has been shown ([17], [18], [19]) that deep Convolutional



Fig. 2. Sample images from the RGB-D Object Dataset.

Neural Networks (CNNs) that have been trained on massive
datasets can be used as off-the-shelf feature extractors for a
variety of visual tasks obtaining state-of-the-art results. These
architectures learn hierarchical representations of the input
data that can be divided into low-level at the beginning of
the network and high-level (semantic information) at the end.
This also has the advantage that we no longer need to resort
to hand-engineered features that require time and expertise
to be developed.

In accordance with the previous arguments, we chose
the well-established AlexNet model based on the network
proposed by Krizhevsky et al. [1] and publicly available
in the Caffe Model Zoo [20]. This network was trained on
a subset of the ImageNet dataset and is composed of five
convolutional layers and three fully-connected layers. The
last fully-connected layer is a softmax layer that outputs a
probability distribution over all the classes. Since we are not
interested in the classes for which the network was originally
trained, we discarded the last layer. After running tests using
the feature vectors obtained after the last convolutional layer
and the two remaining fully-connected layers, we decided to
use the features obtained after the last fully connected layer
because these led to better classification results.

III. DATASET

In order to evaluate our approach, we selected the RGB-
D Object Dataset [21], which is composed of 300 common
household objects organised into 51 categories. The dataset
was acquired with a Kinect v1 sensor by placing each object
on a turntable and taking video sequences of a full rotation
at three different heights of the sensor. For every frame,
there is RGB and depth information available, though for our
preliminary study we have only used the RGB information.
Samples of the sort of images included in the dataset can be
seen in Fig. 2.

The main reason that we chose this dataset for the evalua-
tion of our approach is that it provides different views of the
same object in some sort of sequence. This is of particular
interest because it resembles to some extent how a robot
could interact with the objects in order to get more informa-
tion and build a better, more complete representation. Thus,
we suggest that the results obtained from our evaluation can
give valuable insights into how our approach would perform
on a real robot in a real environment.

IV. EXPERIMENTS

Below we propose a series of experiments that aim to
evaluate our approach in terms of classification accuracy,

robustness against addition of new classes (incrementality),
and suitability for realising active and on-line learning.

A. Object Classification

For evaluating the classification accuracy of our approach,
we selected 10 random classes from the dataset and divided
them into 60% of the instances for training and the remaining
40% for testing. The parameters of the LB-SOINN were
chosen as λ = 100, agemax = 50, η = 1.001, c1 = 10.0, and
c2 = 0.1. These values were obtained empirically through a
non-exhaustive search in the parameter space of λ, agemax,
c1, and c2. For η we used the value proposed by Zhang et
al., which reduces the weight of the Euclidean distance for
the similarity calculation as the dimensionality of the input
data increases. Since we disabled the algorithm for splitting
overlapped regions, the parameter γ was not used.

We observed that when using the method in a purely
unsupervised manner, more clusters than the alleged number
of classes were being reported by the system. We believe
that this is a consequence of how the data is distributed in
the feature space. Presumably, for some classes we may have
a higher intra-class variation that results in the formation of
several clusters that belong to the same superclass. In order
to investigate this further, we decided to use a variant of
the t-distributed Stochastic Neighbour Embedding (t-SNE)
algorithm [22] that uses Barnes-Hut (BH) optimization for
projecting our data onto a 2-dimensional space. Despite
the fact that it is difficult to draw conclusions from these
projections, they can be quite useful to get some insights into
how the data is distributed and what the model is learning.
Fig. 3 shows the projections of the training data, the network
(nodes) learnt by our approach, and the test data respectively,
for one of the runs. From this projection, we can sense
that effectively there is more than one cluster for most of
the classes. Moreover, it seems that some classes are more
concentrated whereas others are spread across the whole
feature space. These insights coupled with the assumption
that there is a tutor available are what motivated us to use
the method in a supervised manner.

Since this dataset was built in a controlled environment
(e.g. the objects are rotated in front of the sensor in a
systematic way), we decided to randomly shuffle the images
per instance in order to emulate a more natural interaction
(this is consistent with moving the object randomly in front
of the robot).

Fig. 4 shows the results of training and testing the algo-
rithm on 10 classes for 20 different runs, where each run is
characterised by a different random sequence of the classes.
The box plots show how the accuracy per class varies in
every execution and are an indication of the dependence
that exists on the sequence in which the system learns the
objects. As can be seen, the accuracy is consistently high
(over 90%) for most of the classes. In the case of the
“bell pepper”, for which the accuracy is relatively low, we
observed that this was an effect of how the dataset was split.
In particular, for this class the system was being trained
on red and green peppers, and tested on green and yellow
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Fig. 3. Projections of the a) training set, b) learnt network, and c) test set. The data is first projected onto a 50-dimensional space using Principal
Component Analysis (PCA) and then onto a 2-dimensional space using the t-SNE algorithm with BH optimization. The labels for the learnt network were
assigned through supervision.
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Fig. 4. Box plots of the accuracies for 10 classes (54 instances). The box
plots have a maximum whisker length of 1.5 IQR and were generated by
running the algorithm 20 times with the classes being input in random order
in each run. 60% of instances were used for training and 40% for testing.
The last box plot corresponds to the overall accuracy for the 10 classes.

peppers. As discussed previously, in Fig. 3 we saw that for
some classes we had multiple clusters. In most of these
cases, these subclasses correspond to different instances of
the same class (high intra-class variation). Consequently, the
system can get confused when it sees an instance that is
quite different from the ones it saw during training. In order
to test this hypothesis, we repeated the previous experiment
but we split the dataset per number of images rather than per
number of instances. The corresponding box plots are shown
in Fig. 5, where we can see that the accuracy is superior to
95% for all the classes.

In Fig. 5 we can also observe outliers with 0% accuracy for
most of the classes. This issue requires further investigation
but we believe that it is a consequence of particular sequences
of the input data. It is possible that in some conditions only
small isolated clusters will form, which will get removed
periodically by the noise removal algorithm preventing the
formation of robust structures.
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Fig. 5. Box plots of the accuracies for 10 classes (54 instances). The box
plots have a maximum whisker length of 1.5 IQR and were generated by
running the algorithm 20 times with the classes being input in random order
in each run. All instances were used for training and testing. 60% of images
were used for training and 40% for testing. The last box plot corresponds
to the overall accuracy for the 10 classes.

B. Incremental Learning

In order to test how well our model behaves when incre-
mentally adding new classes, we performed the following
evaluation. Using the same partition of the dataset as before
(60% - 40% instances), we began training and testing the
system on only two classes and computing the overall accu-
racy. Then, we trained on two more classes and computed the
overall accuracy based on the four classes. We repeated this
process until having trained the system on 50 classes. Fig. 6
reports the results (blue line). As can be seen, the approach
has a very good incremental performance for a relatively
small number of classes but it decreases significantly above
18 classes. This has to do again with the fact that we did not
use all the instances for training. In fact, by performing an
analogous experiment to the one discussed in Section IV-A,
we observed that when using all the instances for training,
the overall accuracy remains above 90% (red line).
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Fig. 6. Incremental learning. Evaluation of how the overall accuracy of
the approach varies with the addition of new classes. We performed the
evaluation with two partitions of the dataset as discussed in Section IV-A.

C. Knowledge Gap Detection

In order to assess whether the model has the potential
to identify knowledge gaps (i.e. detect when a new label is
needed), which is necessary for realising active learning, we
defined three different heuristics:

• Agreement between 2 nearest neighbours (NNA): A
new data point belongs to a class if and only if the
two nearest neighbours have the same label.

• Nearest neighbour threshold (NNT): A new data point
belongs to a class if and only if the distance to its nearest
neighbour is less than the similarity threshold.

• Confidence score (NNC): A new data point belongs to a
class if and only if the ratio between similarity threshold
and distance to its nearest neighbour is greater than a
pre-defined value (confidence threshold).

The similarity threshold of a node in the network is a
quantity that determines whether a new node should be
added in the network [15] when a new signal is present.
Hence, it is logical to assume that this quantity can be
used for aiding in the classification of new data points and
eventually deciding whether new nodes should be added in
order to cover the corresponding area of the feature space.
An analogous argument can be made about considering the
agreement between the two nearest nodes, since this would
mean that there is a higher probability of the node belonging
to that class. If the corresponding heuristic is not satisfied,
the system can identify the data point as unknown and switch
to a learning behaviour.

We performed the evaluation on a small subset of the
dataset with disjoint classes, i.e. we train on 5 classes and
test on 5 different classes. The goal is to observe whether
the model can identify what it does not know using any of
the proposed heuristics. Table I summarizes the results. It is
evident that whereas the NNT heuristic allows for a better
discrimination of unknown classes, it also punishes harder
on known classes as compared to NNA. On the other hand,
NNC offers a better trade-off at identifying knowledge gaps
without misclassifying known classes as unknown.

D. Computational Performance

One of the main goals of our research is to be able to
perform the training and recognition processes in real time
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Fig. 7. On-line learning. Variation in the processing time per image and
in the number of nodes as a function of the number of learnt classes.

(on-line learning). To this end, we evaluated the time it takes
for the system to process each image frame with respect to
the number of learnt classes. We performed this evaluation in
the incremental setting described previously. The results are
summarized in Fig. 7. Despite the fact that the time increases
almost linearly with the size of the network, it can be seen
that the computational cost to process every frame is still
suitable for on-line operation.

For all the tests, we run the feature extractor on a GPU
NVIDIA GeForce GTX 980M and the classifier on a CPU
Intel Core i7 with 32 GB of RAM. The operating system
used is Linux Ubuntu 14.04 LTS 64-bit.

V. DISCUSSION AND FUTURE WORK

In this paper we presented a new approach for on-line
incremental learning that builds on the successes of deep
Convolutional Neural Networks while allowing for training
the system in real time. We evaluated the approach in terms
of classification accuracy, incrementality, and suitability for
performing active and on-line learning. Our results show that
the approach has a very impressive classification accuracy
when training the system on all the instances available for
each class, but it tends to decrease when evaluating the
system on unseen instances of known classes. This shows
that for some classes (depending on the level of intra-
class variation) the approach is able to discriminate among
different instances. Further investigations are required for
assessing how to leverage this property while also retaining
generalization over the classes.

We also showed that the approach is suitable for on-line
learning although it is expected that with the number of
classes and consequent increase in the number of nodes,
the computation time will increase. However, most of the
variation in computation time is due to traversing the network
for finding the nearest neighbours, a task that is highly
parallelizable. Hence, we do not consider this to be an issue.

Some of the negative features that we observed include
the fact that the approach is highly dependent on the type
of data, the sequence in which it is input to the algorithm,
and the chosen parameters. Moreover, we saw that with
the proposed heuristics it is difficult but still possible to
discriminate unknown classes while still preserving a good
accuracy on the classes that are known.



TABLE I
CONFUSION MATRICES RESULTING FROM THE USE OF THE HEURISTICS PROPOSED IN SECTION IV-C. CONFIDENCE THRESHOLD FOR NNC IS 0.5.

NNA NNT NNC
Non-Disjoint Classes

comb 1176 0 0 0 1 12 331 0 0 0 0 858 944 0 0 0 6 239
toothb. 0 1147 0 0 0 21 0 188 0 0 2 978 0 874 0 0 2 292
garlic 0 0 2378 0 0 0 0 0 645 0 0 1733 0 0 1872 0 0 506

pitcher 0 0 0 557 0 0 0 0 0 0 0 557 0 0 0 351 0 206
marker 1 23 1 0 1845 67 0 0 0 0 629 1308 0 30 3 0 1782 122

Disjoint Classes
lightb. 1 313 734 0 47 158 0 0 12 0 13 1228 0 267 539 0 82 365
pliers 668 0 80 0 116 175 9 0 0 0 0 1030 122 2 20 0 186 709

pepper 0 0 862 0 91 272 0 0 0 0 0 1225 0 20 98 0 257 850
keyb. 814 0 1 40 30 186 0 0 0 0 0 1071 181 0 0 7 10 873
towel 57 0 724 516 0 283 0 0 0 0 0 1580 46 0 22 551 14 947
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A more thorough evaluation is required with a higher
number of classes in order to assess the scalability of the
approach. So far, the number of classes has been limited by
the available datasets, but in real-world applications there is
no limit on the number of objects a robot may have to learn.

In the future, we plan to implement the approach on a real
robot and evaluate the benefits that situated interaction may
convey. For example, having a tutor with whom the robot
could interact would allow it to correct wrong labels and
learn stronger and more reliable structures. In addition, we
could leverage the knowledge that time is continuous and that
objects preserve their class labels across time independently
from the viewpoint. In particular, Pasquale et al. [9] showed
that using a temporal window in order to produce the class
label at test time significantly improves recognition accuracy.
Finally, we also plan to incorporate depth information into
the feature representations, which has been shown to out-
perform RGB information for classification [7], and study
further the potential for realising active learning.
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